Annual Drinking Water Quality Report Attalla Water Works Board

January-December 2020.

Is my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and the Alabama Department of Environmental Management (ADEM) drinking water health standards. Your Local Water officials vigilantly safeguard its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standards. We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water treatment facility and well field are located just outside the city limits on Highway 77 at the old "Lake RHEA" site. We have four deep wells; they can produce 1905 gallons per minute. The Attalla Water Works Board routinely completes a water storage facility inspection plan, and utilizes a Bacteriological Monitoring Plan and a Cross Connection Policy is in place to insure good safe drinking water for our customers. Chlorine is added to the water as disinfectant and the required residual is maintained to protect your drinking water from any possible outside contaminants. We have a Source Water Protection Plan available for review that provides more information such as potential sources of contamination. We are committed to ensuring the quality of your water.

If you have any questions concerning this report or your water utility, please call Chris Boleware at 256-538-2816. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings held on the second and fourth Monday of each month at The Water Works Board Office, 509 Fourth Street NW, Attalla, Alabama, 35954 beginning at 4:00 PM.

BOARD OF DIRECTORS

Jeff Bailey – Chairman

• Betty Billingsley – Vice Chairman

Parker Ray Wain

Bobby Bryant

Virginia Smith

Attalla Water Works Board routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2020. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily pose a health risk.

PLAIN LANGUAGE DEFINITION

- Not Required (NR) Laboratory analysis not required due to waiver granted by the Environmental Protection Agency for the State of Alabama.
- Parts per million (ppm) or Milligrams per liter (mg/l) one part per million corresponds to one minute in two years or a single penny in \$10,000.
 Parts per billion (ppb) or Micrograms per liter one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Parts per trillion (ppt) or Nanograms per liter (nanograms/l) one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in 10,000,000,000.
- Parts per quadrillion (ppq) or Picograms per liter (picograms/l) one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.
- Picocuries per liter (pCi/L) picocuries per liter is a measure of the radioactivity in water.
- Millirems per year (mrem/yr) measure of radiation absorbed by the body.
- Nephelometric Turbidity Unit (NTU) nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- Variances & Exemptions (V&E) State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
- Action Level (AL) the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Treatment Technique (TT) (mandatory language) A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.
- Maximum Contaminant Level (mandatory language) The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal (mandatory language) The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal or MRDLG The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Maximum Residual Disinfectant Level or MRDL The highest level of a disinfectant allowed in drinking water. There is convincing evidence that
 addition of a disinfectant is necessary for control of microbial contaminants.
- T.O.N Threshold odor number.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water run-off, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and
 petroleum production, and can also come from gas stations, urban storm water run-off, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or ADEM requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Table of Primary Contaminants

		AMOUNT		MCL	AMOUNT
CONTAMINANT	MCL	DETECTED	CONTAMINANT		DETECTED
Bacteriological			Endothall(ppb)	100	ND
Total Coliform Bacteria	< 5%	ND	Endrin(ppb)	2	ND
Turbidity	TT	0.05	Epichlorohydrin	TT	ND
Fecal Coliform & E. coli	0	ND	Ethylbenzene(ppb)	700	ND
Radiological			Ethylene dibromide(ppt)	50	ND
Beta/photon emitters (mrem/yr)	4	ND	Glyphosate(ppb)	700	ND
Alpha emitters (pci/l) (2010)	15	1.70	Haloacetic Acids(ppb)	60	5.74
Combined radium (pci/l) (2010)	5	ND	Heptachlor(ppt)	400	ND
Uranium(pci/l)	30	ND	Heptachlor epoxide(ppt)	200	ND
Inorganic			Hexachlorobenzene(ppb)	1	ND
Antimony (ppb)	6	ND	Hexachlorocyclopentadiene(ppm)	50	ND
Arsenic (ppb)	10	ND	Lindane(ppt)	200	ND
Asbestos (MFL)	7	ND	Methoxychlor(ppb)	40	ND
Barium (ppm)	2	0.06	Oxamyl [Vydate](ppb)	200	ND
Beryllium (ppb)	4	ND	Pentachlorophenol(ppb)	1	ND
Bromate(ppb)	10	ND	Picloram(ppb)	500	ND
Cadmium (ppb)	5	ND	PCBs(ppt)	500	ND
Chloramines(ppm)	4	ND	Simazine(ppb)	4	ND
Chlorine(ppm)	4	2.05	Styrene(ppb)	100	ND
Chlorine dioxide(ppb)	800	ND	Tetrachloroethylene(ppb)	5	ND
Chlotite(ppm)	1	ND	Toluene(ppm)	1	ND
Chromium (ppb)	100	ND	TOC	TT	0.38
Copper (ppm) (2019)	AL=1.3	0.14	TTHM(ppb)	80	13.76
Cyanide (ppb)	200	ND	Toxaphene(ppb)	3	ND
Fluoride (ppm)	4	ND	2,4,5-TP (Silvex)(ppb)	50	ND
Lead (ppb) (2019)	AL=15	ND	1,2,4-Trichlorobenzene(ppb)	70	ND
Mercury (ppb)	2	ND	1,1,1-Trichloroethane(ppb)	200	ND
Nickel (ppm)	0.1	ND	1,1,2-Trichloroethane(ppb)	5	ND
Nitrate (ppm)	10	0.60	Trichloroethylene(ppb)	5	ND
Nitrite (ppm)	1	ND	Vinyl Chloride(ppb)	2	ND
Total Nitrate & Nitrite	10	0.60	Xylenes(ppm)	10	ND
Selenium(ppb)	50	ND			
Thallium(ppb)	2	ND			
Organic Chemicals					
Acrylamide	TT	ND	_		
Alachlor(ppb)	2	ND			
Atrazine(ppb)	3	ND	_		
Benzene(ppbv)	5	ND	_		
Benzo(a)pyrene[PHAs](ppt)	200	ND	_		
Carbofuran(ppb)	40	ND	_		
Carbon Tetrachloride(ppb)	5	ND			
Chlordane(ppb)	2	ND	_		
Chlorobenzene(ppb)	100	ND			
2,4-D	70	ND			
Dalapon(ppb)	200	ND			
Dibromochloropropane(ppt)	200	ND			
0-Dichlorobenzene(ppb)	600	ND	_		
p-Dichlorobenzene(ppb)	75	ND	_		
1,2-Dichloroethane(ppb)	5	ND			
1,1-Dichloroethylene(ppb)	7	ND			
Cis-1,2-Dichloroethylene(ppb)	70	ND			
trans-1,2-Dichloroethylene(ppb)	100	ND			
Diahlaramathana(nnh)	5	ND			

5

5

400

6 7

30

20

Dichloromethane(ppb)

Dinoseb(ppb)

Diquat(ppb)

1,2-Dichloropropane(ppb)

Di-(2-ethylhexyl)adipate(ppb)

Di(2-ethylhexyl)phthlates(ppb)

Dioxin[2,3,7,8-TCDD](ppq)

ND ND

ND

ND

ND

ND

ND

ND

Table of Detected Drinking Water Contaminants									
CONTAMINANT			Range			Amount Detected		Likely Source of Contamination	
	1 1	iological Contami	nants .	Janı	ıary - Dece			1	
Alpha emitters (2018)	0	15	0		ND	0.05 1.70	NTU pCi/L	Soil runoff Erosion of natural deposits	
Barium	2	2	ND	-	0.06	0.06	ppm	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
Chlorine	MRDLG 4	MRDL 4	1.82	-	2.18	2.05	ppm	Water additive used to control microbes	
Copper (2019)	1.3	AL=1.3	No. of Sit	No. of Sites above action level 0		0.59	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Lead (2019)	0	AL=15	No. of Sit level	No. of Sites above action level 0			ppb	Corrosion of household plumbing systems, erosion of natural deposits	
Nitrate (as N)	10	10	0.60	-	0.60	0.60	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Total Nitrate & Nitrite	10	10	0.60	-	0.60	0.60	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Turbidity	N/A	TT		-		0.05	NTU	Soil runoff	
	Or	ganic Contaminan	ts Jan	uar	y - Decemb	er 2020			
Haloacetic Acids (HAA5)	N/A	60	1.60	-	20.00	5.74	ppb	By-product of drinking water chlorination	
Total Organic Carbon (TOC)	N/A	TT	ND	-	1.00	0.38	ppm	Naturally present in the environment	
Total Trihalomethanes (TTHM)	0	80	4.30	-	35.00	13.76	ppb	By-product of drinking water chlorination	
	Seco	ondary Contamina	nts Ja	nua	ry - Decem	ber 2020			
Chloride (2018)	N/A	250	7.03	-	7.03	7.03	ppm	Naturally occurring in the environment or as a result of agricultural runoff	
Color	N/A	15	ND	-	5.00	5.00	PCU	Naturally occurring in the environment or as a result of treatment with water additives	
Copper	N/A	1	ND	-	0.48	0.48	ppm	Erosion of natural deposits; leaching from pipes	
Iron	N/A	0.3	ND	-	0.11	0.01	ppm	Erosion of natural deposits	
Magnesium (2018)	N/A	0.05	9.20	-	9.20	9.20	ppm	Erosion of natural deposits	
Sulfate (2018)	N/A	250	8.08	-	8.08	8.08	ppm	Naturally occurring in the environment	
Total Dissolved Solids	N/A	500	161.00	-	161.00	161.00	ppm	Erosion of natural deposits	
	Sp	ecial Contaminant	ts Janu	ıary	- Decembe	er 2020			
Calcium (2018)	N/A	N/A	42.20	-	42.20	42.20	ppm	Erosion of natural deposits	
Carbon Dioxide (2011)	N/A	N/A	5.80	-	5.80	5.80	ppm	Erosion of natural deposits	
Manganese	N/A	N/A	ND	-	0.04	0.01	ppm	Erosion of natural deposits	
рН	N/A	N/A	7.07	-	7.32	7.21	SU	Naturally occurring in the environment or as a result of treatment with water additives	
Sodium (2018)	N/A	N/A	5.49	-	5.49	5.49	ppm	Naturally occurring in the environment	
Specific Conductance (2018)	N/A	<500	299.00	-	299.00	299.00	umhos	Naturally occurring in the environment or as a result of treatment with water additives	

Sulfate (2018)	N/A	N/A	8.56	-	8.56	8.56	ppm	Naturally occurring in the environment	
Temperature	N/A	N/A	15.00	-	22.00	22.00	°C	Naturally occurring in the environment	
Total Alkalinity	N/A	N/A	129.00	-	170.00	148.30	ppm	Erosion of natural deposits	
Total Hardness (as CaCO3) (2018)	N/A	N/A	143.00	-	143.00	143.00	ppm	Naturally occurring in the environment or as a result of treatment with water additives	
Unregulated Contaminants January - December 2020									
Bromodichloromethane	N/A	N/A	ND		0.0080	0.0039	ppm	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff; byproduct of chlorination	
Chloroform	N/A	N/A	ND		0.025	0.0128	ppm	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff; byproduct of chlorination	
Dibromochloromethane	N/A	N/A	ND		0.0026	0.0016	ppm	Naturally occurring in the environment	
Per-and Polyfluoroalkyl Substances (PFAs)	N/A	N/A	ND		N/D	N/D	ppb		

GENERAL INFORMATION

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

As you can see by the tables, our system had no violations of allowable limits of contaminants in drinking water. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected. The EPA has determined that your water IS SAFE at these levels.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA (Environmental Protection Agency)/CDC (Center of Disease Control) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline. All Drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Attalla Water Works Board is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus monitoring for these contaminants was not required.

We at the Attalla Water Works Board work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

For more information contact:

Chris Boleware Attalla Water Works Board 256-538-2816